50-Year-Old Physics Theory Proven for the First Time With Electromagnetic Waves

Superconductor Magnetic Waves Concept
Scientists at the University of Southampton have experimentally proven the Zel’dovich effect by amplifying electromagnetic waves using a spinning metal cylinder, confirming a theoretical prediction from the 1970s and opening new avenues in technology and quantum physics. Credit: SciTechDaily.com

University of Southampton researchers have confirmed the Zel’dovich effect, where twisted waves are amplified by a rotating object. This finding, previously only demonstrated with sound waves, now applies to electromagnetic waves, with promising implications for quantum physics and energy-efficient technologies.

Physicists at the University of Southampton have successfully tested and confirmed a 50-year-old theory for the first time using electromagnetic waves.

Their experiments demonstrated that the energy of waves can be amplified by bouncing ‘twisted waves’—waves with angular momentum—off a rotating object under specific conditions.

This is known as the ‘Zel’dovich effect’, named after Soviet physicist Yakov Zel’dovich who developed a theory based on this idea in the 1970s. Until now, it was believed to be unobservable with electromagnetic fields.

“The Zel’dovich effect works on the principle that waves with angular momentum, that would usually be absorbed by an object, actually become amplified by that object instead, if it is rotating at a fast enough angular velocity. In this case, the object is an aluminum cylinder and it must rotate faster than the frequency of the incoming radiation,” explains a Research Fellow at the University of Southampton, Dr. Marion Cromb.

Zel’dovich Experiment Equipment
Equipment used to complete the Zel’dovich experiment. Credit: University of Southampton

“Colleagues and I successfully tested this theory in sound waves a few years ago, but until this most recent experiment, it hadn’t been proven with electromagnetic waves. Using relatively simple equipment – a resonant circuit interacting with a spinning metal cylinder – and by creating the specific conditions required, we have now been able to do this.”

The scientists’ findings are published in the journal Nature Communications.

Connection to the Doppler Effect

The Zel’dovich effect is difficult to observe, but has links to a well-known phenomenon called the Doppler effect which we all experience around us every day.

Imagine you are standing on a busy road and a police car races towards you with its siren going. From your perspective, as it approaches the siren sounds higher pitched than when it has passed.

This is because the sound waves in front of the car coming towards you are compressed, at a high frequency – hence a higher pitch. Behind the car, as it moves away, they are more spread out at a lower frequency – resulting in a lower pitch. This is the Doppler effect.

This can also be applied to light waves. In fact, astronomers use it to understand whether a planetary body is moving towards, or away from the Earth, according to the frequency of the light waves seen from their point of observation.

A similar ‘rotational Doppler’ frequency shift happens for twisted waves and relative rotation.

In the Zel’dovich effect, the metal cylinder needs to rotate fast enough that from its perspective it ‘sees’ a ‘twisted wave’ shift in angular frequency, so much that it actually goes to a negative frequency. This changes the way the wave interacts with the cylinder. Usually the metal would absorb the wave, but when the wave frequency ‘goes negative’ the wave is in fact amplified – reflecting off the cylinder with more energy than when it approached.

“The condition for amplification is from the rotating perspective of the object,” explains Marion Cromb. “Twisting electromagnetic fields hitting it have become rotationally Doppler shifted, so much (or so low) that they’ve gone through zero and into a ‘negative’ angular frequency. Negative frequency then means negative absorption, and this means amplification.”

Implications and Future Research

The scientists say that proving the Zel’dovich effect in different physical systems, both acoustics and now electromagnetic circuits, suggest that it is quite fundamental in nature. Electromagnetic tests also pave the way to observing the effect on a quantum level, where the waves could be generated by the cylinder amplifying the quantum vacuum.

Professor Hendrik Ulbricht of the University of Southampton, supervisor on the project, said: “I am very pleased that we have now experimental proof of the electromagnetic Zel’dovich effect. In electromagnetic settings it will be more straight forward to go for the next big challenge, which is the quantum version of the effect.

“Our setup is comparably simple and it was my joy at work during COVID to set up this experiment and take the first data. To see the results out now is very rewarding and I am grateful to the fantastic team involved.”

The researchers also say their findings may be useful for electrical engineers in exploring improvements to induction generators, such as those used in wind turbines.

Reference: “Amplification of electromagnetic fields by a rotating body” by M. C. Braidotti, A. Vinante, M. Cromb, A. Sandakumar, D. Faccio and H. Ulbricht, 27 June 2024, Nature Communications.

About Fun Fact News

Fun Fact News was launched in 2019 with the slogan “forward with the people,” because that is what we believe in. Fun Fact News cares about quality of life, the kind of world we live in, and about people. Fun Fact News is more than a newspaper. It is an instigator, an entertainer, a cultural reference point, a finger on the pulse and a daily relationship. Fun Fact News believes that great journalism has the power to make each reader’s life richer and more fulfilling, and all of society stronger and more just.

View all posts by Fun Fact News →

Leave a Reply

Your email address will not be published. Required fields are marked *